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ABSTRACT

This paper examines the problems of state
estimation for & moving acoustic source confined to
a well-defined, simply-connected or multiply-
connected region of state space. A multiple-
parameter constrained estimator that provides
enhanced performance and that permits determine-
tion of the most prodbable solution is presented.
The estimator is a batch processor that yields both
dynemic and residual classifiers, the behavior of
which is sh to be dependent on source-observer
geometry. The proposed realization is well-suited
for solution selection through hypothesis testing.
Experimental results showing esstimator performance
sre presented and solution quality is discussed.

r
I.__INTRODUCTION

In the underwater eanvironment there are
aumerous situations in which s source is knowa to
be confined to one of several, well-defined regions
of the state space. BEffective state estimation
under these conditions requires that maximum use be
made of all available information, and that some
measure of solution quality be provided. Speci-
fically, constraints on the state space environmeat
are critical for problems characterized by large
range-to-baseline ratios or high levels of
measurement noise. Previous work has demonstrated
that for the case where only bearing measurements
involving high levels of “effective noise”™ are
available, & phenomenon is experienced whereby
significant deterioration in performance occurs
with increasing range or noise level.l:2 1That
study also examined estimation under a speed con-
straint and demonstrated significant improvement
when such a priori information was included. Often,
additional known parameters or knowledge of the
physical constrsints on some function of the source
state components (such as a bound on rsnge, speed,
or depth) are available and should be exploited.

This paper addresses the problea of estimating
the state and providing a measure of the quality of
the solution for a source confined to s well-
defined region of the state space. A multiple~
pacrameter constrained estimator is presented for
(1) enhsncing the quality of estimstes when s prioci
information constrains the state to o known (simply-
connected) region, and (2) deternining the most
probable solution when the regions are distinct
(multiply-connected).
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When the source is known to be confined to a
simply-connected cegion, it is possible to
capitalize on such information via multiple-
parameter constrained estimation. This is reslized
through augmentation of the information matriz by
satisfying the Kuhn-Tucker conditioasd or by
treating the constraints as pseudo-measurements.
Convergence is guaranteed by adaptively adjusting
the weights of the constrained pacameters.

WVhen the source is known oanly to be conflned in
one of several possidle well-defined flanite
regions, a parallel configuration with multiple
constraints is preseated. The configuration
utilizes both dynamic and residual clues to
classify the solution as to its most probable state
space. The dynamic clue or classifier is defined
in terms of a measure of deviation of the estimated
velocity parameters from its expected range of
values. Residuals ace exploited by determination
of expected variance and whiteness measures.

Under the above implementation, the ability to
provide the most probable estimate of the state, or
solution enhancement and & measure of solution
quality, is dependent upon the amount of s priori
information available. Experimental results
demonstrating system performance for various cases
outlined above are presented.

IXI. UNCONSTRAINED ESTIMATION

The problem under consideration involves the
estimation of the position and velocity of a con-
stant velocity acoustic source from noise-corrupted
measurements. The source-observer scenario is illus-
trated in Figure 1. Let (ryp, cyp) and (£, fyq)
be the positional components of the source and
receiver, respectively. The discretized version of
the dynamic process is given in Table 1. Por the
bearings-only case, the measurement is given by

2(k)=B(k)
-1
=tan (e o(R)-e (O 1/ [ (K)-e (KD}, (1)

which represents & nonlinear model relating the
noise-free measurements to the unknown source
state. In (T-6), &g is the estimated state at

the selected reference time. 1Its value at any
other time is determined via (T-1) and used in (1)
to produce the appropciate dearing angle.
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vhen the number of measurements, K, is greater
then 4, (T-6) represents an overdetermined system
of nonlinesr equations. A weighted least-tquares
approach ainimizes the norm of the residual vector

-1
l.-s (Z.-Z(ir)l ' (£

where SsDiaglopgl., ap is the bearing meesucesent
noise standsrd deviation, and Z(iy) is the besriag
sequence generated by the estimated state, iy, vie
(T-1), (T-4), and (1). The problem is complicated
by the unusual obsecvebility properties of this
system,® especially for loag range scesacios.

The minimum of the norm-squared error,

- T -2 -
J = lz.-ztxr)) s lz.-z(x,>1 . 3

is_found when the estimate i, causes the gradient
G(xp)=3J/3xp to vanish; i.e.,

a - s +T.~1 s
-1/26(!,)-(32(xr)laxr] H [2--2(81)1-(0]. (8)

For Gaussian noise, the resulting i, cepresents
the maximum likelihood estimator (MLR). The
premultiplying matrix is given by

- s acl_-l,,=
(GZ(xr)laxIl-R s A(xr) %)
where
-1 -1 ®
R = Diaglr "(k)], X=1,2,...,K
ocB1 --ine1 t’COUQI -t'sinal
osB. -sinB, 2t_cosB, -2t_sinf
el ° 2 72 T 2 iy kg, tp) (D)
cosaK —sinBK Kt’eoss‘ -Kt’linﬂl‘

and where t, is the data sampling period and #(tg.tg)
is the transition matrix between the initial time, tg
and reference time, typ. The kiD element of the
disgonsal matrix of (6),

- 2 2,172
r(k)-[[?“(k)-rm(k)l »tenm-rw(k)l ) A ¢

is the estimated range at the ktI instaat, and

- -1, -
Bk-tnn ([r‘r(k)-elo(k)l/(r,T(k)-r,O(k)ll (9

in (7) is the corresponding bearing estimate. Heunce,
one seeks to solve the nolinear set of equstions

T, . .2-1_-2 -
A (‘1’. H (2.-2(:1)1-101 (10)
for it. Employing the Gauss-Newton iterative
methodd to solve (10) yields

- - 2aTg=2,-22 ,=12T2-~1,-2

b4 = A

o1 :juj( jﬁj s A,) ARy sz, (11)
where ij snd Z4 are eveluated at ;j. and the
step size, &y, is selected at each iteration to
snguce convergence.

Equation (11) represeants the solutios for the
unconstreined mazimum likelihood estimstor.
Performance of the estimator has Deen assessed by
examination of the ideal information matrix, or
Cramer-Rao bound, for large range-to-baseline
‘OOI.tEl.l.l In this situation, the sssumptioss
of comsstant rsage and symmetric geometry asce
valid. Under these conditions, the eigenvalues of
the ideal information matriz are giveas in the
second column of Teble 2.1 Note thet significant
deterioratiun ia performence occurs with incressiag
range or noise level.

III. RSTIMATION IN COMFTRAINED STATE SPACE

since errors in the estimates of cange and range
tate are inversely proportiosal to iy, 8nd igy:
respectively, it is seen from Table 2 that
variations in these estimates significaatly
increase for large values of "effective noise,” rog/B,
where 8 denotes synthetic baseline. When unresson-
asble estimates result, g priori informatios or
heucistic data cam be utilized to adveantage. Often.
known parameters or knowledge of the physical cos-
steaints on some functions of the state components
are aveilable and should be exploited. Under these
conditions, the prodblem then becomes one of
minimiziag the cost fumction

Ial2g-2U37) 178~ 2202037} (12)
subject to the coastraiat

£(ipicdp . (13)
Here, fiip) and b denote the vectors [(fy,ly,...,0)7T
and [(by,bp,....by) 1T, respectively, and N is the
number of constraints. Demoting fiseiMizTh?, the

necessary and sufficient conditions for J to be mini-
sum is given by the Kubn-Tucker conditions.Z:3 That is,

N
s s STas2 =22 1, 11
xju-xjoljlljlj $"he g;‘u.‘nxl .

(i}i?s'zz‘;f p'{l‘:lli;Ji (160)
iml

sy by~ (R4,1)10 i=1,2,...,0  (1ad)

py20 i=1,2,...,N (lae)

£4(2y,25by 11,2,...,N , (14d)

where py,l«1,2,...,0 is o scalar to be determined.
For the single parameter constraiat case, p cano be
shown to be conveniently computed ltorltlvolyz via

pj,1-pjodp (13%)
where

8050.5{ (£(Xp)-b}/ (WIpMi) -

(E¢xp) 7 (£CRp)+d)ECxpI-BI1} , (16)

and where W is the state vector associsted with
£(xy), Py is its covarisnce, and d is selected
to ensure system stability. MNultiple parameter
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constraints can be realized by either sequential or
simultaneous processing via (l4). For the case of
single parameter constraint, experiments have shown
satisfactory convergence and stability for both
speed and depth consteaint +6_.  For the case of
speed constraint, an improvement factor of 2 in
localization error has been demonstrated.

An alternstive implementation of estimation in
a constrained state space is to consider the
constraints as "pseudo-measucements.” If the
measurement vector is given by

2paiZq,01Ten an
the cost function then becomes JP=J¢Jb where

Ip=b-£(20) 1T 2(b-£(2e1, (18)
subject to the constraints of (13). The solution
is obtained by finding an fr such that Jj is
minimized. Setting the gradient a3J,/3xp equal

to zero and employing the Gauss-Newton itecative
method yields

;5.1”;5 8 { (i}i}zs'zij l"i}i'ls'zz.
o1 -2, -1,T -2 .
. Ex (A,,25 LAY I [bi—f(xj)l) . (19)
or
Ejd:;j‘aj(é}QJTzéj)’lfz}oJflz”. (20)

where §1 is the modified infcrmation matrix given by

2 T=-2_-24 -T A
QAR “sTA P72
+ Z Ablpi bi (21)
and
Abzaf(;cr)/a;r R (22)
QiDilsldBk.P"’- (23)
T - T,T
Zp.x(ze (b-f(lr)l } (24)

and where p;>0 and is either known or can be
determined adaptively via

J...:.‘/j jal,2,... (2%)
until the constraints are satisfied. Experiments
conducted utilizing (20) for the speed coanstraint
have yielded equivalent results to those obtained
via (14). Although the use of (1l4) for range
constraint under adverse conditions has expecienced
some cases of slow rate of convergence, (20) has
provided stable and rapid solutions. Note, however,
that (20) cepresents the solution of an unbiased
estimator; as such the modified information matrix
(or its inverse) must be interpreted appropriastely
consistent with the a priogi dats description.

when iasufficient description on the dsta-weighting
assignment is aveilable, the modified information
matriz can be more appropriastely generated dy
applying (14), or .in the case of slow convergence
by utilizing the speed solution of (20) as the
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constrained parameter and then applying (14).
Further comparison of (14) and (20) in regard to
their cobustness, and analysis of the mechanisms
that impact the estimate will be addressed in
future studies.

IV. CONSTRAINED ESTIMATION IN
SIMPLY-CONNECTED REGIONS

When & priorci information constrains the source
to a known region (simply-connected), performsnce
can be significantly improved. This can be demoan-
strated by examining the augmented information
matcix of (21) when range information, with
standard deviation, op, is available at K.

Under this condition,

acty) A% . i;a;zf\g (26)
where
) 0 0 0 0
Aaa : : : : (Lo, tg) (27)
) ° ° 0

COIB‘ cosﬂK Kt’sanK Kt’colBK .

Assuming uniform signal-to-noise cratio, the augmented
information matrix at K/2 becomes

K/2 Qk (k-K/Z)Qk QR (K/?)QR
Qs 2 2, |* 2. |28
—K/2 (k-K/?)Qk (k-K/2) Qk (K/Z)QR (K/2) QR
where
2; (3 cosi
1 cos Bk -uancosBk
Q- (29
kT 22 oA cosh in2h
% -lxnﬂkcosﬁk sin Bk
and
. 2 . - -
L sin ﬁK sinB cosf,
Qn (30)
R 2 . P 24
% snnﬁKcolBK cos'B,

Using the assumption of symmetric geometcy, QUK/2) is
dh;onalizod:1 that is,

[ cosza [+] b

z(ak] = . / rzaz an
25 k3
L o sin Bk J
and -
sinzﬁK 0
2

elQ,l = L 24 /ap - (3)

0 cos BK o

For long range scenarios, the range is sssumed to
be essentially constant; i.e., Rzrl. Undec these
conditions, the expected eigenvalues of Q(K/2)

are given in Table 2. The variance is given by the
reciprocal of the eigenvalue, or

2
a (B)oz(l)
] » 3

2 .
f u-Rl.l".ll.lu (3)

g -
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where 03(9) is the variance of u due to the Thus, (37) and (38) provide the expected dynamic

parameter p alone. Clearly, if range information is ?eh‘vior of gource Clti,ltel. This is illultrufcd
given, the expected improvement factor in the reduc- in Figure 3. The solution, dependent on the noise
tion of veriance over bearings-only processing is conditions, may fsll anywhere slong the speed-range
(od(B)+0l(R))/a(R). Equation (33) can be curve. However, if the maxium speed, Sp,,. is
generalized when multiple pacrameters are known known a priori, the most probable solution must
a priori and Q(K/2) is diagonalizable to yield then be bounded by Sp,y end Sy;, and, therefore,
is confined to R as showa in Figuce 4. 1If, in
az(B) addition, the source is known to be in either Ry
2 u or R, knowledge of Spez then can eliminate
o, 3 o) ' (34) R, as a possible solution.
1 +G“(B)‘:,a (pyg)
i ¥ Fucther insight can be gained by analyzing the
resulting in an improvement factor of effects of constr?ining the estimates away from the
(1'°5(B)ti°iz(9i)'- Fucther analysis on the impact speed-range function. This corresponds to

Set 3 i i i i ace 7. berforming estimation with range and speed
of additional information is contained in refere constraints. Thus. given the estimate (Sy.8),
and if the parameters are constrained to R
V. PROPERTIES OF ESTIMATION IN (Sg,R+8R), (35) then becomes
CONSTRAINED STATE SPACE

- 3 . - -
(Re8R) (B+8DB) =Spsin(0+80)-Sgsinly+ay) ,

Based on the analysis in the previous section, (39)
the availability of a priori information, heuristic where ;.co_ﬁ, Assuming small 46 and Ay, the cesult-
or otherwise, can clearly provide improvement in ing bearing rate error, AR, can be approximated as
system performance. However, in msny situations, . .. . s e N .
such as the one in which the source is kaown only 88={(Sp/R)AC(1-8C/2)cos®- (ABR/R+BAR/RY )/ (1+4R/R), (40)
to be confined to one of several distinct regions
(multiply-connected), only limited heuristic where AC is the change in Cp corresponding to aR.
information is available. Under these conditions,
improvement in state estimation is still possible Equation (40) represents the slope of the
by providing the most probable solutiom. residual, and can easily be computed for each leg

of constant observer velocity. Fucthermore, it
Consider the relation for cross-range-rate provides a measure of inconsistency and sensitivity
component in the state estimates. Such a measure can be used
. in conjunction with the expected residual variance,
RB=Spsin(Cy-B)-Sgsin(Cy-B) 3%) as given by (3), to supply a more extensive descrip-
. tion of the residuals. To a cectain extent, (3)
where B is the bearing rate, Sr and Sy are and (40) provide a "whiteness” measure. This
soucrce and obsecrver speed, respectively, and Cp measure can alternatively be obtained by performing
and C, represent source _and gbserver course, a spectrsl analysis on the residuals. Similar
respectively. Let (ST'CT.B.ﬂ) be the analysis can be performed for different constraint
estimate obtained by constraining the range at combinations or with additional constraints.
Re. The variation of speed as a function of
range can be analyzed by perturbing (35) to yield Thus, when a priori information constrains the
source to one of several possible solution cegions,
g & 2 L8 - - ot or when limited heuristic data are available, the
As’““"“‘RCAB/ARC)I"ne'[Ae/ARC]((ST'AS)/t‘ne] (36 estimation configuration of Figure 5 can be employed

along with (37), (38), (3), and (40) to provide the

where 8:Cp-8 and the assumption is made that most probable solution.

ap/ARc=0. Generally, 8(R) is point symmetcical about

(R,8) and can be approximatgd as piecewise linear VI. GENERAL_OBSERVATIONS

(Figure 2). The quantity 46/AR- can be trested SOLUTION QUALITY, AND SELECTION

as & constant, ky, within the interval (Ry,R3).

Thecefore, the slope of the specd-cange function can The analysis presented up to this point deals '
be cewritten as with the problem of estimating the state parameters

by capitalizing on any available a priori

- - Lo - information. Depending on geometcy and amount of
o) Kk S,c080]/(sin6ed0c0s0) . (37) information (heuristic or otherwise), constrained
estimation can provide enhancement in the tacrget
state estimates either by reducing the state ecrroc
variances or by providing the most probable
solution(s). Some general observations are
summacized as follows:

/ =
AS/AR, ((BoRcAﬂ/na

Clearly, © is geometry and noise dependent and is
inversely related to the slope. As © increases,
the change in the speed estimate is less senstive
to cange. The minimum speed can be computed sbout
(R,8) by setting (37) to zero to yield

1. The speed-cange crelation of Figure 2 is
derived by minimizing the cost function, J, and is
geometcy dependent. The slope and minimum speed
are predictadble and can be anslyzed vis (37) and
For geometries that exhibit stronger across-
the-line-of-sight component, the magnitude of the

Smin:(BeRcA/BRE) /kpcos0 (38)

where ky is generally large for small 0.
Consequently, geometcies with small 0 generslly (38).
have smaller Smin:-
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speed-range slope is smallec and the minimum speed
is larger; furthermoce, the residuals are more
sensitive to deviations from the solution curve.

2. The availability of valid a prioej
information (e.g., range, speed, course) will
provide enhanced estimates with reduced state ecror
variance, consistent with respect to both dynamic
and cesidual behaviors.

3. The svailability of valid speed or range
information will enable the selection or
determination of the most probable solution based
on dynamic and residual congistency tests.

4. The dynamic behavior curve can potentially
be applied to determine the approximate dynamic
behavior of the process.

S. In the absence of other information, the
physical constraint of maximum allowable speed and
the predicted minimum speed can be employed to
bound the solution heuristically. In addition,
both dynamic and cesidual clues can be employed to
determine a solution region.

Based on the preceding observations, estimation
via the constrained approach provides improvements
in system pecformance. Given a state estimate from
an algorithm, the dynamic and residual clues
can provide a check on its validity. In addition,
the constrained estimation approach provides the
mechanisms that maximize the use of any available a
priori information. Furthermore, it can be employed
for solution selection.

Theoretically, the covarisnce matrix prcovides &
statistical measure of solution quality assessment,
although its validity is algorithm dependent. The
predictable dynamic and residucl behaviors and
solution bounds provided by constrained estimation
clearly can be used as heuristic solution quality
measures; and, when used in conjunction with the
covariance matrix, can provide a visble means for
solution quality assessment and solution selection.

VII. SIMULATION RESULTS AND DISCUSSION

Experiments were conducted using the geometries
of Figure 1. A totsl of six geometries wers
considered. A normalized obsecrver speed (Sq/Speyx’
of 0.47 was employed. Source dynamics are given in
Table 3. Zero mesn Gaussian noise with 2° standerd
deviation was added to the true bearing. A total
of 400 equispaced measurements were collected on
each leg. All subsequent discussion is referenced
to the final time.

Figures 6 and ? show the behavior of speed and
course estimates as a function of the constrained
cange for different 82Ce-3. The unconstrained MLE
estimetes are also included for completeness. As
shown, the dynamic behavior is geometry dependent.
At the center portion of the course-range plot, the
magnitude of the slope incresses as the angle O
decreases. Consequently, the geometry with the
smellest © exhibits the smallest minimum speed,
as shown in Figure 6 (see (33)); also, the speed-
cange slope is much sharper with smaller ©
geometry since it varies inversely with sin® and

cos® (see (37)). For the approximately symmetric
source-observer geometries considered, the
estimated course function is approximately point
symmetric about the point at Re(Sp;a(0)] where
Cp=90°. In the case where O is near zero, the

180° difference in the estimated course correspond-
ing to ranges on either side of Re(Sy;i,(0)]

is reflected by a switch of sign for the slope of
the speed-range curve. As @ increases, the last
term of (37) dominates; thus, the symmetric change
of the estimated course about 90° in Figure 7 leads
to slopes for the speed-range plot which are equal
in magnitude but cpposite in sign. This dynamic
behavior is illustrated in Figure 8 where a totsl
of 30 noise sequences have been applied.

Sensitivity of the state estimates is examined
by perturbing the range or speed estimate and by
monitoring the cresulting residuals. The results
are shown in Figures 9 and 10. The shaded area of
Figure 9 represents solutions which yield approxi-
mately the same value of residusl vacisnce, op?.

In essence, this area can be viewed as a region of
minimal dg?; therefore, estimstes located

outside the shaded region may yield residuals which
are statistically inconsistent and which should be
rejected as possible solutions. This situation is
illustrated in Figure 10 when constraints were
imposed by utilizing ea incompatible range-speed
combination. In fact, the cesidusls have the
functionsal form ‘t“go"atrl‘ﬂel- whece Ty denotes
the length of the Lth leg, ey is the refecenced
initial residual, and Bey is the random component.
For the noise free case, the slope A8y sgrees well
with that given by (40). Thus, if incompatible

a priori information is employed, clues from the
residuals, such as 35’ and AB!. can potentially

be utilized to reject any invalid estimate. 1In this
context, both dynamic and residual clues can be sp-

plied advantageously for solution quality assessment.

The improvement obtainable when good information
is utilized for constrained estimation is
illustrated in Figure 11. In this figure, it can
be seen that when the range, Rpsop, OF speed
is given as heuristic dats, the constrained
estimator provides significant improvement in
solution accuracy and solution uncectainty
reduction. Solution consistency is confirmed by
both the dynamic behavior and the residuals.

EZstimation for the situation when the source is
known to be in one of three regions is demonstrated
in Flguces 12 and 13. Information is alsa
available (with probebility 1) in regard to the
source's maximum speed. The configuration of
Figure 5 is employed by constraining range to each
cespective region with and without the additional
speed constcraint. For the case of constraining
only range, hypothesis testing of maximum speed is
employed, and the results show that the region,
denoted by /27, is the tcrue solution. For the
case of constraining both range and speed, the
residual clues of Figures lla-c again provide the
necessatry information to select Ry as the most
pcobable solution.
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N VIII. SUMMARY AND CONCLUSION Table 1. System Dynamics and Mcasurements
The prodlem of parameter estimation in a Soucce States
constrained state space that capitalizes on the .
utilization of s priori infocmatiaon (oc heuristic Xp(kel) = kel idx (K) (T-1)
data) was presented. A nonlinear estimator with x (k) = [ (k) ¢ (K) V _(K)V (k)]r (T-2)
multiple constraints was considered and its T 1T yT T yT
properties analyzed. The estimator is & batch T "
processor that yields both dynamic and residusl , "',
characteristics which permit solution enhancement, $- ;_" -I -
solution selection, and quality assessment. (1-3)
Seasitivity of these characteristics is shown to Qbserver States
depend on source-observer geometry. Dynamic clues
are common for low bearing rate trajectories, while X, kel) = kel k) x, (k) + 8(K) (T-4)
residual clues are most evideat in scenarios having (where 4(k) accounts for effects of maneuver)
.. 4 noticesble across-the-line-of-sight velocity T
»" component. While the ability to determine the state x,(k) - e oK) 'yo(k) Vol V,Q(k” (1-3)
pacameters via acoustic messuremant processing
» becomes incressingly difficult with deteriorating v
P conditions, effective utilization of a priori Hessycement Vector
Xy information is shown to provide significant Z a2 2(x_)en (1-6)
e enchancement. When the source is known to be » T T
I,_-' confined in a well-defined region, snhancement is Z = (z4.2,,...02,1] (-1
"_\:' realized by rfdm_:it_:s the u_alution error variance. n = ["1'"2""'"11 (1-8)
~ When the a priori information or heuristic dats e 0
L] constrain the source in one of several regions, the tn] = 0] (T-9)
estimator is capable of providing the most probable T 2
T~ solution. 1In addition, both dynamic and residual Elnn] = Diaglo, 1, k=1,2,...,K (T-10)
._J‘._ clues are predictable. These, when used in -_
- conjunction with the estimated state covariance
~."\ matcix, can provide a viable measure of solution
", quality. Table 2. Eigenvalues of RUK/2) via Processing Bearing
.."'\ (with Range Constraint)
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